

Mark Scheme (Results)

Summer 2022

Pearson Edexcel International Advanced Level In Chemistry (WCH14)

Paper 01: Rates, Equilibria and Further Organic Chemistry

Section A

Question	Answer	Mark
Number		
1(a)	The only correct answer is B (two)	(1)
	A is not correct because 2-methylpropan-2-ol has a peak for the 3 CH_3 groups and one for the OH group making 2 in total	
	C is not correct because 2-methylpropan-2-ol has a peak for the 3 CH ₃ groups and one for the OH group making 2 in total	
	D is not correct because 2-methylpropan-2-ol has a peak for the 3 CH ₃ groups and one for the OH group making 2 in total	

Question Number	Answer	Mark
1(b)	The only correct answer is A (propanal)	(1)
	B is not correct because propane has 2 peaks in the ratio 3:1	
	C is not correct because propan-1-ol has 4 peaks in the ratio 3:2:2:1	
	D is not correct because propan-2-ol has 3 peaks in the ratio is 6:1:1	

Question	Answer	Mark
Number		
1(c)	The only correct answer is C (butanal)	(1)
	A is not correct because butanoic acid has a singlet due to the COOH	
	B is not correct because butanone has a singlet due to the CH_3 adjacent to the $C=O$	
	D is not correct because butan-1-ol has a singlet due to the OH	

Question	Answer	Mark
Number	The only convect engages is D (CH CH CHO)	(1)
2	The only correct answer is B (CH ₃ CH ₂ CHO)	(1)
	A is not correct because there will not be a peak at m/z 29.0390	
	${\it C}$ is not correct because there will not be a molecular ion peak a m/z 58.0417	
	D is not correct because there will not be molecular ion peak at m/z 58.0417 nor a peak at m/z 29.0390	

Question	Answer	Mark
Number		
3	The only correct answer is D (octan-1-ol, octanal, octane,)	(1)
	A is not correct because octan-1-ol is the most polar so would have the shortest retention time	
	B is not correct because octan-1-ol is more polar than octanal and so would have a shorter retention time	
	C is not correct because octane is non-polar so would have the longest retention time	

Question	Answer	Mark
Number		
4	The only correct answer is C (0.75)	(1)
	$m{A}$ is not correct because the calculation has used the distance from the solvent front to the sample not the baseline	
	B is not correct because the calculation has used the length of the plate, not the distance the solvent travelled	
	D is not correct because the calculation has been inverted	

Question Number	Answer	Mark
5	The only correct answer is C (alkaline hydrolysis of an ester)	(1)
	A is not correct because this reaction will produce a carboxylic acid	
	B is not correct because this reaction will produce a carboxylic acid	
	D is not correct because this reaction will produce a carboxylic acid	

Question Number	Answer	Mark
6	The only correct answer is C (3-methylpentan-3-ol)	(1)
	$m{A}$ is not correct because this is a primary alcohol and so can be formed by the reduction of an aldehyde	
	$m{B}$ is not correct because this is a secondary alcohol and so can be formed by the reduction of a ketone	
	D is not correct because this is a secondary alcohol and so can be formed by the reduction of a ketone	

Question	Answer	Mark
Number		
7	The only correct answer is B (4.17)	(1)
	A is not correct because this is the $-\log$ of the concentration	
	C is not correct because this is the $-\log of$ the K_a	
	D is not correct because this is the $-\log$ of the K_a multiplied by the concentration	

Question Number	Answer	Mark
8	The only correct answer is B (13.43)	(1)
	A is not correct because this is the $-\log [OH^-]$	
	C is not correct because it does not produce $2 \times OH^-$	
	D is not correct because the $-\log [OH^-]$ has been added to pK_w	

Question	Answer	Mark
Number		(1)
9(a)	The only correct answer is D (hydrochloric acid added to ammonia)	(1)
	A is not correct because it is a weak acid and strong base	
	B is not correct because it is a strong acid and strong base	
	C is not correct because it is a weak acid and weak base	

Question	Answer	Mark
Number		
9(b)	The only correct answer is C (methyl red)	(1)
	$m{A}$ is not correct because malachite green would change colour at about pH l	
	B is not correct because methyl yellow would change colour at about pH 3.5	
	$m{D}$ is not correct because thymol blue would change colour at about pH 9	

Question	Answer	Mark
Number		
10(a)	The only correct answer is C (Graph 3)	(1)
	A is not correct because it is a rate v concentration graph for a second order reaction	
	B is not correct because it is a concentration v time graph for a zero order reaction	
	D is not correct because it is a rate v concentration graph for a first order reaction	

Question Number	Answer	Mark
10(b)	The only correct answer is D (Graph 4) D A is not correct because it is a graph of rate against concentration for a second order reaction B is not correct because it is a graph of concentration against time for a zero order reaction	(1)
	C is not correct because it is a graph of rate of reaction against concentration of the reactant for a zero order reaction	

Question	Answer	Mark
Number		
11(a)	The only correct answer is A (colorimetry)	
	B is not correct because the solution would not go cloudy	
	C is not correct because there is no base to titrate against	
	D is not correct because starch is an indicator and would immediately turn blue-black	

Question	Answer	Mark
Number		
11(b)	The only correct answer is B (1.98)	(1)
	 A is not correct because the concentration of the acid has been increased three times C is not correct because the concentration of the acid has been decreased six times D is not correct because the pH has been multiplied by three 	

Question	Answer	Mark
Number		
12	The only correct answer is A (+38.8 kJ mol ⁻¹)	(1)
	B is not correct because the units are incorrect	
	C is not correct because the gradient has been divided by R	
	D is not correct because the gradient has been divided by R and the units are incorrect	

Question	Answer	Mark
Number		
13	The only correct answer is D (decreasing the temperature would increase the equilibrium yield of sulfur trioxide)	
	A is not correct because vanadium oxide is a heterogeneous catalyst	
	B is not correct because decreasing pressure would decrease the equilibrium yield of sulfur trioxide	
	C is not correct because increasing the surface area of the catalyst will affect the rate not the equilibrium yield of sulfur trioxide	

Question Number	Answer	Mark
14	The only correct answer is A $(CaO(s) < H_2O(l) < CO_2(g) < SO_2(g))$	
	B is not correct because $SO_2(g)$ has a greater standard molar entropy than $CO_2(g)$	
	C is not correct because $SO_2(g)$ has the greatest standard molar entropy	
	$m{D}$ is not correct because $SO_2(g)$ has the greatest standard molar entropy	

Question Number	Answer	Mark
15	The only correct answer is B (PS)	
	A is not correct because R is smaller than S	
	C is not correct because Q is larger than P and R is smaller than S	
	D is not correct because Q is larger than P	

Section B

Question Number	Answer	Additional Guidance	Mark
16(a)(i)	$K_{\mathbf{p}} = \frac{p^2 N H_3}{p N_2} p^3 H_2$	Allow round or no brackets Allow upper case Allow pp/PP Allow $p(NH_3)^2 p NH_3^2 \text{etc}$ Ignore units even if incorrect Do not award square brackets	(1)

Question Number	Answer		Additional Guidance			Mark
16(a)(ii)	mole fraction of N ₂	(1)	Example of completed	l table		(3)
	 mole fraction of H₂ 	(1)	Substance	Mole fraction	Partial pressure/atm	
	 both partial pressures 	(1)	N ₂	0.18	36	
			H_2	0.54	108	
			NH ₃	0.28	56	
			TE for M3 on calculat	red mole fractions i	multiplied by 200	

Question	Answer		Additional Guidance	Mark
Number				
16(a)(iii)	An answer that makes reference to the following points:		Example of calculation	(3)
	• correct use of K_p expression	(1)	$56^2 \div (108^3 \times 36)$	
	• correct answer and 1 or 2 SF	(1)	7 or $6.9 \times 10^{-5} / 0.00007$ or 0.000069 Allow 3SF $6.92 \times 10^{-5} / 0.0000692$ Do not award $7.0 \times 10^{-5} / 0.000070$	
	• correct units	(1)	atm ⁻²	
			Allow TE from (a)(i) and (a)(ii)	
			If mole fractions are used for the calculation max score 1 for the correct answer and 1-3 SF	
			Correct answer with or without working scores 3	

Question Number	Answer	Additional Guidance	Mark
16(a)(iv)	An answer that makes reference to the following points:	Allow reverse argument	(2)
	• the (forward) reaction is/ must be exothermic (1)		
	(more ammonia shows that) the equilibrium has moved/shifted to the right OR	Allow favours forward reaction/shifts to the product side	
	(more ammonia shows that) a new K_p is established which is larger	Allow K_p increases/eqm constant increases (1)	
		Ignore just 'more ammonia produced' or 'yield increases'	

Question Number	Answer	Additional Guidance	Mark
16(b)(i)	• $NH_4^+(aq) + Cl^-(aq)$	Do not award NH ₄ ⁺ Cl ⁻ (aq) Do not award NH ₄ Cl(aq)	(1)
		Do not award any other state symbols	

Question Number	Answer	Additional Guidance	Mark
16(b)(ii)	• $\Delta_{\text{sol}} H = \Delta_{\text{hyd}} H - \text{Lattice Energy}$ or	Allow LE for Lattice Energy Allow $\Delta_{sol} H = -$ Lattice Energy + hydration enthalpies	(1)
	$\Delta_{\rm sol} H = - \text{Lattice Energy} + \Delta_{\rm hyd} H$	Allow $\Delta_{sol} H = -$ Lattice Energy + hydration enthalpies	
		Allow $\Delta H_{\rm hyd}$ etc Ignore standard signs	

Question Number	Answer		Additional Guidance	Mark
16(b)(iii)	enthalpy change of hydration of ammonium chloride	(1)	Example of calculation $-307 + (-378) = -685 \text{ (kJ mol}^{-1}\text{)}$ Allow (kJ mol ⁻)	(2)
	enthalpy change of solution	(1)	705 + (-685) = (+)20 (kJ mol ⁻¹) Allow TE on arithmetical errors Do not award use of incorrect expression Correct answer with or without working scores 2 Units are not required but if wrong penalise only once.	

Question Number	Answer		Additional Guidance	Mark
16(b)(iv)	An explanation that makes reference to three of the following points			(3)
	M1 the bromide (ion) is larger than the chloride (ion)	(1)	Allow bromine ion larger than the chlorine ion	
	And any 2 of the following		Do not award larger atomic radius	
	M2 hydration enthalpy of the bromide ion less exothermic/less negative (than the chloride)	(1)	Allow smaller/lower Allow hydration enthalpy of bromine would be less exothermic/less negative (than the chlorine)	
			Allow hydration enthalpy of ammonium bromide would be less exothermic/less negative (than ammonium chloride)	
	M3 lattice energy of ammonium bromide would be less exothermic/less negative (than ammonium chloride)	(1)	Allow smaller/lower	
	M4 the enthalpy of solutions depends on the values of both hydration and lattice energies (so the enthalpies of solution should be similar)	(1)	Accept because we don't know the magnitude of the reduction in hydration and lattice energies it is not possible to assess the overall effect	
			Allow reverse arguments for MP1, MP2 and MP3	
			Ignore any reference to reactivity, polarisation and charge density	

Question Number	Answer	Additional Guidance	Mark
16(c)			(1)
	• $NH_4^+ + H_2O \longrightarrow NH_3 + H_3O^+$	Accept $NH_4^+ \longrightarrow NH_3 + H^+$	
		Allow eqm sign	
		Ignore NH ₄ Cl \longrightarrow NH ₄ ⁺ + Cl ⁻	
		Ignore NH ₄ Cl + aq \longrightarrow NH ₄ ⁺ + Cl ⁻	
		Ignore state symbols even if incorrect	
		Do not award NH ₄ Cl + aq → NH ₃ + HCl	
		Do not award NH ₄ Cl → NH ₃ + HCl	
		Do not award NH ₄ Cl \longrightarrow NH ₃ + H ⁺ + Cl ⁻	
		Do not award $NH_4^+ + OH^- \longrightarrow NH_3 + H_2O$	

(Total for Question 16 = 17 Marks)

Question Number	Answer	Additional Guidance	Mark
17(a)	An answer that makes reference to the following points:		(3)
	• A	Allow structural or skeletal formulae for max 2 marks	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ignore any names even if incorrect	
	• B	Ignore bond angles/lengths	
	H H H O H	Penalise missing Hs only once	

Question Number	Answer	Additional Guidance	Mark
17(b)(i)	• 2-hydroxybutanenitrile	Allow 2-hydroxy(l)buta(n)nitrile Allow 2-hydroxy(l)butane-1-nitrile Do not award 2-hydroxobutanenitrile Do not award 2-oxobutanenitrile Do not award cyanides or other non IUPAC names	(1)
		Ignore any extra hyphens, commas and spaces	

Question	Answer	Additional Guidance	Mark
Number			
17(b)(ii)			(1)
	• one isomer rotates (the plane of monochromatic)	Do not award bends	
	plane-polarised light in one direction and the other in		
	the opposite direction/ the isomers rotate (the plane		
	of) plane-polarised light in opposite	Allow different directions	
	directions/clockwise and anticlockwise	Allow PPL for plane polarised light	
		Allow the direction of rotation of plane polarised light	
		Allow see which way the sample rotates PPL	

Question Number	Answer		Additional Guidance	Mark
17(b)(iii)	An answer that makes reference to the following points: • propanal is planar around the CHO/reaction site/C=O/carbonyl	(1)	Do not award just propanal is planar Do not award planar intermediate/carbocation Do not award any reference to nucleophilic	(2)
	CN ⁻ /nucleophile can attack on either side/both sides/above and below (giving a racemic/equimolar/ 50/50 mixture)	(1)	substitution (S _N 1/S _N 2)	

Question Number	Answer	Additional Guidance	Mark
17(c)(i)	N OH	Ignore displayed or structural formulae Ignore bond lengths and bond angles Allow Ignore connectivity if vertical bond	(1)

Question Number	Answer	Additional Guidance	Mark
17(c)(ii)			(1)
	no carbon atom has 4 different groups or (central) carbon atom is bonded to two CH ₃ /same groups or no asymmetric/chiral carbon atom or the compound is superimposable on its mirror image or it does not have a chiral centre	Ignore symmetrical Do not award 2 of the same molecules/compounds attached to the carbon atom Do not award racemic mixture	

Question Number	Answer	Additional Guidance	Mark
17(d)(i)			(1)
	• correct chemical shift and carbon environment	Chemical shift range Carbon environment	
		190-225 (ppm) C=O	
		OR	
		0-60 (ppm) C—C	
		Both range and carbon environment required. Allow the full range or a number/ smaller range within the range. Allow for carbon environment C-C=O and C-C=O	

Question	Answer	Additional Guidance	Mark
Number			
17(d)(ii)			(1)
	• Propanal: 3/three		
	and		
	• Propanone: 2/two		

Question Number		Answer		Additional Guidance
18*	structured answer with linkages ar Marks are awarded for indicative of structured and shows lines of reasons.	content and for how the answer is		Guidance on how the mark scheme should be applied. The mark for indicative content should be added to the mark for lines of reasoning. For example, a response with five indicative marking points that is partially structured with some
	Number of indicative marking points seen in Answer	Number of marks awarded for indicative marking points		linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning).
	6 5-4 3-2 1	4 3 2 1		If there were no linkages between the points, then the same indicative marking points would yield an overall score of 3 marks (3 marks for indicative
		0	<u>.</u>	content and no marks for linkages).
		e marks should be awarded for stru Number of marks awarded for structure of Answer and sustained lines of	cture	In general it would be expected that 5 or 6 indicative points would get 2 reasoning marks, and 3 or 4 indicative
	The following table shows how th	e marks should be awarded for stru Number of marks awarded for structure of Answer and	acture	In general it would be expected that 5 or 6 indicative points would get 2 reasoning marks, and 3 or 4 indicative points would get 1 mark for reasoning, and 0, 1 or 2 indicative points would score zero marks for reasoning. If there is any incorrect chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded do not
	Answer shows a coherent logical structure with linkages and fully sustained lines of reasoning demonstrated	e marks should be awarded for stru Number of marks awarded for structure of Answer and sustained lines of reasoning	acture	In general it would be expected that 5 or 6 indicative points would get 2 reasoning marks, and 3 or 4 indicative points would get 1 mark for reasoning, and 0, 1 or 2 indicative points would score zero marks for reasoning. If there is any incorrect chemistry, deduct mark(s) from the reasoning. If

Indicative content	
Similarities IP1 the Cl is lost in all reactions	Allow all produce HCl IP1 can be scored by the equations in IP4, IP5 and IP6
IP2 water, ethanol and ammonia all contain a lone pair that attacks the delta+ carbon atom in ethanoyl chloride	Allow water, ethanol and ammonia are all nucleophiles/they are all nucleophiles/all reactions are nucleophilic
IP3 all reactions are very vigorous/violent	Allow all reactions take place at room temperature/ are very fast/spontaneous/ do not require catalysts
Differences IP4 water: forms ethanoic acid/ CH ₃ COOH (CH ₃ COCl + H ₂ O) → CH ₃ COOH (+ HCl) IP5 ethanol: forms ethyl ethanoate/ CH ₃ COOCH ₂ CH ₃ (CH ₃ COCl + CH ₃ CH ₂ OH) → CH ₃ COOCH ₂ CH ₃ (+ HCl) IP6 Ammonia: forms ethanamide/ CH ₃ CONH ₂ (CH ₃ COCl + 2NH ₃) → CH ₃ CONH ₂ (+ NH ₄ Cl)	If name or formula are given, they must both be correct but only penalise once in IP4, IP5 and IP6. Penalise minor slips e.g. missing H, pentavalent C once only in IP4, IP5 and IP6. Note the mark is for the organic product not the equation. Allow CH ₃ COCl + NH ₃ CH ₃ CONH ₂ + HCl Ignore nature of the reactions e.g. esterification/hydrolysis/elimination/addition/substitution/condensation. Polymerisation is incorrect chemistry so will penalise a reasoning mark.

(Total for Question 18 = 6 Marks)

Question Number	Answer	Additional Guidance	Mark
19(a)(i)	An answer that makes reference to the following point: • HCOOH + KOH → HCOOK + H₂O	Allow HCOO ⁻ K ⁺ /HCOO ⁻ + K ⁺ Allow HCOOH + OH ⁻ → HCOO ⁻ + H ₂ O Allow Na in place of K Ignore state symbols even if incorrect Do not award HCOO − K	(1)

Question Number	Answer		Additional Guidance	Mark
19(a)(ii)			Example of calculation	(2)
	correct volume read off the graph	(1)	22 (cm ³) This may be noted on the graph	
	correct concentration	(1)	$25.0 \times 0.15/22.0 = 0.17045 \text{ (mol dm}^{-3}\text{)}$	
			Ignore SF except 1SF	
			Allow TE on wrong volume	
			Correct answer scores 2	

Question Number	Answer		Additional Guidance	Mark
19(a)(iii)	An answer that makes reference to the following points:			(3)
	volume at half-neutralisation	(1)	11 cm ³ (Allow TE from volume in (a)(ii))	
	pH value at half-neutralisation	(1)	$pH = 3.8 (\pm 0.1)$	
	• calculation of K_a	(1)	(Hydrogen ion concentration = $10^{-3.8}$) $K_a = 1.5849 \times 10^{-4} / 0.00015849$ (mol dm ⁻³) Correct answer with no working scores 3	
			Allow TE throughout Ignore SF	
			If 3.9 used (Hydrogen ion concentration = $10^{-3.9}$) $K_a = 1.2589 \times 10^{-4} / 0.00012589 \text{ (mol dm}^{-3}\text{)}$	
			If 3.7 used (Hydrogen ion concentration = $10^{-3.7}$) $K_a = 1.9953 \times 10^{-4} / 0.00019953$ (mol dm ⁻³)	
			Allow TE from wrong pH	

Alternative method 1

• pH at half-neutralisation

• p K_a value

• calculation of K_a

(1) $3.8 (\pm 0.1)$

(1) $3.8 (\pm 0.1)$

(1) $K_a = 10^{-3.8}$ = 1.5849 × 10⁻⁴ / 0.00015849 (mol dm⁻³) Correct answer with no working scores 3

> If 3.9 used Hydrogen ion concentration = $10^{-3.9}$ = 1.2589 × 10^{-4} / 0.00012589 (mol dm⁻³) = K_a

> If 3.7 used Hydrogen ion concentration = $10^{-3.7}$ = $1.9953 \times 10^{-4} / 0.00019953 \text{ (mol dm}^{-3}\text{)}$ = K_a

> Allow TE from wrong pH for M2 and M3

Alternative method 2 (using pH of the methanoic acid at the start) (1) 2.3 pH at the start Allow 2.0-2.5 (1) Hydrogen ion concentration = $10^{-2.3}$ convert pH into H⁺ concentration $=5.0119 \times 10^{-3} / 0.0050119 \text{ (mol dm}^{-3)}$ $K_a = (5.0119 \times 10^{-3})^2 = 1.6746 \times 10^{-4} / 0.00016746 \text{ (mol dm}^{-3})$ calculation of K_a Correct answer with no working scores 3 2.0 gives a value of 6.667×10^{-4} (mol dm⁻³) 2.1 gives a value of 4.206×10^{-4} (mol dm⁻³) 2.2 gives a value of 2.654×10^{-4} (mol dm⁻³) 2.3 gives a value of 1.674×10^{-4} (mol dm⁻³) 2.4 gives a value of 1.057×10^{-4} (mol dm⁻³) Allow TE from wrong pH (i.e. not in the range of 2.0-2.5) Ignore SF 2.5 gives a value of 3.162×10^{-3} (mol dm⁻³)

Question Number	Answer	Additional Guidance	Mark
19(b)	An answer that makes reference to the following points:	Example of calculation $[H^{+}] = K_{a} \times \underline{[HA]} \text{OR} \underline{[H^{+}]} = \underline{[HA]}$ $[A^{-}] K_{a} [A^{-}]$	(2)
	• calculation of [H ⁺] (1)	$2.5119 \times 10^{-5} / 0.000025119$	
	• correct ratio (1)	$[HA] = \underbrace{2.5118864 \times 10^{-5}}_{1.3 \times 10^{-5}} = 1.9322:1$	
		Correct answer with no working scores 2	
		Allow just 1.9322 Allow rounding to 2:1	
		Ignore SF	
		Reciprocal ratio correctly identified 0.5175:1 scores 2 Correct answer with no working scores 2	
		Allow Henderson-Hasselbach equation	
		$pH = pKa - log [HA]$ $[A^{-}]$	
		$4.6 = 4.8861 - \log \frac{[HA]}{[A^{-}]} $ (1)	
		[HA] = 1.9322:1 (1) $[A^{-}]$ Allow just 1.9322 Ignore SF	
		Reciprocal ratio correctly identified 0.5175:1 scores 2	

Question Number	Answer	Additional Guidance	Mark
20(a)(i)	An answer that makes reference to two of the following points: • 2-bromobutane: first order as doubling the concentration (in experiments 1 and 2 where OH ⁻ is constant) the rate doubles (1)	Two correct orders with no or incorrect reasoning scores 1 Note the reasoning can be shown on the table	(2)
	 hydroxide ions: zero order as doubling the concentration (in experiments 1 and 3 where 2-bromobutane is constant) the rate does not change OR 		
	hydroxide ions: zero order as doubling the concentration (in experiments 2 and 3) where the concentration of 2-bromobutane is halved the rate halves.		

Question Number	Answer	Additional Guidance	Mark
20(a)(ii)		TE on (i)	(1)
	• rate / $r = k [C_4H_9Br]$	Allow displayed or structural formulae Allow rate = $k [C_4H_9Br]^1[OH^-]^0$ Allow upper case K Allow reactants in any order Do not award round brackets	

Question Number	Answer		Additional Guidance	Mark
20(a)(iii)	An answer that makes reference to the following points: • correct calculation	(1)	Allow the calculation from any experiment Example of calculation from experiment 1 1.01 x $10^{-3}/0.100 = 0.0101/1.01 \times 10^{-2}$ TE on (ii)	(2)
	• correct units	(1)	Ignore SF s ⁻¹ Allow s ⁻	
			TE on (ii)	

Question Number	Answer		Additional Guidance	Mark
20(b)	An answer that makes reference to the following points: • M1 dipole on C-Br and curly arrow from bond to Br	(1)	If mechanism is inconsistent with rate equation in (a)(ii) then 2 max	(3)
	• M2 correct intermediate and Br	(1)	(for fully correct mechanism) Allow skeletal formula	
	• M3 curly arrow going from the lone pair on OH ⁻ to the C ⁺ H-C-C-C-C-H H-C-C-C-C-H H H H H H H H	(1)	Ignore final product	

Note if the calculated order is 2 or over allow full marks for S_N2 mechanism • M1 dipole on C-Br **and** curly arrow from bond to Br δ-**(1)** • M2 curly arrow going from lone pair on OH⁻ to C δ⁺ **(1)** M3 correct intermediate with both Br and OH attached with ----- and Ignore final product negative charge **(1)**

(Total for Question 20 = 8 Marks)

Section C

Question Number	Answer		Additional Guidance	Mark
21(a)(i)			Example of calculation	(2)
	• correct use of enthalpy data	(1)	$-(-824.2) + (3 \times -110.5)$	
	• correct enthalpy change	(1)	$= (+)492.7 \text{ (kJ mol}^{-1})$	
			Correct answer with or without working scores 2 The following score 1 for a single error: (+) 713.7 (kJ mol ⁻¹) not x3 -492.7 (kJ mol ⁻¹) signs reversed Allow 3SF Penalise wrong units once only in (a)(i) and (ii)	

Question Number			Additional Guidance	Mark	
21(a)(ii)			Example of calculation	(3)	
	• $\sum S$ products	(1)	$S = \text{products} (2 \times 27.3) + (3 \times 197.6) = 647.4 (J K^{-1} mol^{-1})$		
	• $\sum S$ reactants	(1)	$S = \text{ reactants } 87.4 + (3 \text{ x } 5.7) = 104.5 \text{ (J K}^{-1} \text{ mol}^{-1})$		
	• $\Delta S_{\text{system}} = \sum S \text{ products} - \sum S \text{ reactants}$	(1)	$\Delta S_{\text{system}} = 647.4 - 104.5 = (+)542.9 \text{ (J K}^{-1} \text{ mol}^{-1}\text{)}$		
			Correct answer with no working scores 3		
			Allow TE for M3		

Question Number	Answer		Additional Guidance	Mark
21(a)(iii)			Example of calculation	(3)
	• use of $\Delta S_{\text{surroundings}} = -\underline{\Delta H}$	(1)	$\Delta S_{\text{surroundings}} = - (+492.7) \times 1000/T$	
	• at equilibrium $\Delta S_{\text{total}} = 0 = \Delta S_{\text{surroundings}} + \Delta S_{\text{system}}$	(1)	$0 = -492.7 \times 1000/T + 542.9$	
	calculation of temperature	(1)	≥ 907.53(K)	
			0.90753 scores 2 (not x 1000)	
			Ignore SF TE on (a)(i) and (a)(ii)	
			Correct answer based on ai and aii without working scores 3	
			Allow use of $\Delta G = \Delta H - T \Delta S_{\text{system}}$	

Question Number	Answer		Additional Guidance	Mark
21(b)(i)	An answer that makes reference to the following points:			(2)
	• $\Delta S_{\text{surroundings}}$ and ΔS_{system} are positive	(1)	Allow ΔH is negative/reaction exothermic and ΔS_{system} is positive	
	• so ΔS_{total} will always be positive (so reaction will be feasible)	(1)	M2 dependent on M1	
	OR Using $\Delta G = \Delta H - T \Delta S_{\text{system}}$			
	• Allow ΔH is negative and ΔS_{system} is positive	(1)		
	• so ΔG will always be negative (so reaction will be feasible)	(1)	M2 dependent on M1	

Question	Answer		Additional Guidance	Mark
Number				
21(b)(ii)	An answer that makes reference to the following points:			(3)
	• at a higher temperature $\Delta S_{\text{surroundings}}$ will decrease	(1)	Ignore reference to $\Delta S_{\text{total}} = \text{Rln}k$	
	40 1 (1 (1 (1)	(1)		
	• ΔS_{system} does not change (significantly)	(1)		
	• so ΔS_{total} will decrease/become less positive	(1)		

Question Number	Answer	Additional Guidance	Mark
Number 21(c)(i)	Fe ³ ·(g) + O(g) Fe ³ ·(g) + ½ O ₃ (g) Fe ³ ·(g) + ½ O ₃ (g) B Fe(g) + ½ O ₃ (g) All 7 correct 3 marks 4-6 correct 2 marks 2-3 correct 1 mark	Allow values instead of letters	(3)

Question Number	Answer		Additional Guidance	Mark
21(c)(ii)			Example of calculation	(2)
	• correct expression	(1)	-759 - 416 - 272 + 3920 - 798 + 141 - 249	
	• correct calculation	(1)	= (+)1567 (kJ mol ⁻¹) Allow 3SF	
			Correct answer with or without working scores 2 marks	
			Allow 1 mark for one mistake	

Question Number	Answer		Additional Guidance	Mark		
21(c)(iii)	• the el	ectron is being added to a negative ion	(1)	This can be shown by an equation	(2)	1
	• and so	o there is repulsion (so energy is required)	(1)	Allow repulsion between the electrons		

(Total for Question 21 = 20 Marks)

(Total for Section C = 20 Marks)

TOTAL FOR PAPER = 90 MARKS